
MADRE: The Memory-Aware Data Redistribution Engine

Stephen F. Siegel

Verified Software Laboratory

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

Andrew R. Siegel

Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439, USA

1

MADRE

Stephen F. Siegel [corresponding author]

Verified Software Laboratory

Department of Computer and Information Sciences

University of Delaware

Newark, DE 19716, USA

siegel@cis.udel.edu

tel: +1 302 220 7904

fax: +1 302 831 8458

Andrew R. Siegel

Mathematics and Computer Science Division

Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439, USA

siegela@mcs.anl.gov

tel: +1 630 252 1758

2

Abstract

We report on the development of a new computational framework for efficiently carrying

out parallel data redistribution in a limited memory environment. This new library, MADRE

(The Memory-Aware Data Redistribution Engine), is an open-source, C/MPI-based toolkit de-

signed for quick and easy integration into application codes that have demanding data migration

needs. At the same time, MADRE exposes a lower-level API that greatly facilitates the devel-

opment and incorporation of new algorithms into the MADRE framework, thus serving as a

potential organizing entity for continued research in this area. Finally, we develop, describe,

and test in detail several new parallel redistribution algorithms that are incorporated into the

MADRE distribution.

Keywords: MPI, parallel programming, redistribution, collective communication.

3

1 Introduction

A large class of massively parallel scientific applications are memory-bound. To achieve their sci-

entific aims, considerable care must be taken to reduce their memory footprint via careful program-

ming techniques, e.g. avoiding unnecessary data copies of main data structures, not storing global

meta-data on a single processor, and so forth. The need for efficient many-to-many parallel data

movement arises in a wide variety of such scientific applications (e.g., (Ricker et al., 1999)). Adap-

tive algorithms, for example, require extensive load balancing to ensure an optimal distribution of

mesh elements across processors (both in terms of equal balance and spatial locality) (DeCougny

et al., 1994). Time-dependent domain-decomposed particle codes are another good example, with

frequent re-balancing of the main data structures as particles cross processor boundaries (Nieter

and Cary, 2004).

Typically, such load balancing operations consist of two parts: (1) computing the map that

specifies the new destination for each block of data and (2) efficiently carrying out the movement

of data blocks to their new location without exceeding the memory available to the application

on any process. There has been much research into the first problem, resulting, for example, in

numerous efficient algorithms for computing space-filling curves (Catalyurek et al., 2007). The

second problem, though, has received little attention, especially in the critical case where memory

resources are severely limited and memory use must be completely transparent to the application

developer.

One of the few explorations into memory-efficient solutions to the data redistribution problem

was undertaken by A. Pinar and B. Hendrickson (Pinar and Hendrickson, 2004). They formulated

a “phase”-based class of solution algorithms, showed that the problem of finding a minimal-phase

solution is NP-hard, and studied a family of algorithms for approximating minimal solutions.

There remain a number of open issues, though. For example, one can envision many other

solutions to the redistribution problem that are not based on the concept of migration phases. What

are the basic properties of these algorithms and how will they perform relative to the phase-based

methods? What is the impact of local data copies on overall algorithmic performance? What algo-

4

rithms perform best for different areas of parameter space, including memory footprint, available

scratch space, data block size, etc? Further theoretical work and experimentation is necessary to

address these questions.

Our approach to addressing these questions includes several related goals: (1) to package the

new algorithms in a way that is readily accessible to application-level developers with little inter-

est in the underlying theory and (2) to provide a clear, open source software architecture together

with the rudimentary algorithmic components to encourage the contribution of new methods by

algorithm developers throughout the community. These requirements underpin the current de-

sign philosophy of MADRE (Memory-Aware Data Redistribution Engine) (Siegel, 2008), an open

source, C/MPI-based toolkit for the solution of the limited-memory data redistribution problem.

In this paper we describe the theory behind the multi-tiered MADRE API, focusing first on the

fundamental properties of the local data redistribution problem, then extending this work to the

parallel case. Two parallel algorithms are presented, their basic properties are studied in detail, and

their performance is compared on a range of synthetic problems.

2 Local Redistribution

We begin with a precise analysis and description of the limited-memory redistribution problem

on a single process. We do this both for clarity of exposition and, as we show, because efficient

global (parallel) redistribution algorithms are based in large part on efficient solutions to the local

problem. Providing access to a highly tuned local block solver is thus a key component of MADRE

extensibility. An excerpt of the MADRE interface demonstrating these layers is shown in Figure 1.

The goal of the local redistribution problem is to minimize the number of data copies required to

redistribute the blocks according to a given map. The problem is similar to an in-place redistribution

of an array based on a given permutation. The maps we are considering, however, are more general

than permutations. This is because, in our context, some blocks may be “free,” i.e., they do not

currently contain useful data. A redistribution map may indicate that a data block be moved to a

free space, in which case there is no need to first copy the data in the free space to somewhere else.

5

MADRE layer
Parallel

Redistribution



MADRE_Object MADRE_create(void* data, char* strategy, int numBlocks,
int blockLength, MPI_Datatype datatype, MPI_Comm comm);

void MADRE_redistribute(MADRE_Object madre, int length,
int* destRanks, int* destIndices);

void MADRE_destroy(MADRE_Object madre);
long MADRE_getMem(); . . .

BMAN layer
Block Manager



MADRE_BMAN_Object MADRE_BMAN_create(int maxArrays, int numBlocks,
int numProcs);

void MADRE_BMAN_setDestination(MADRE_BMAN_Object bman,
int index, int rank, int destIndex);

int MADRE_BMAN_getDestinationRank(MADRE_BMAN_Object bman,
int index);

void MADRE_BMAN_sort(MADRE_BMAN_Object bman); . . .

LRED layer
Local

Redistribution



MADRE_LRED_Object MADRE_LRED_create(int maxArrays,
int numBlocks);

void MADRE_LRED_addArray(MADRE_LRED_Object lred,
void* blocks, int elementSize, int blockSize);

void MADRE_LRED_redistribute(MADRE_LRED_Object lred, int* map);

Figure 1: MADRE software layers

The redistribution map is therefore not necessarily a permutation, but a more general sort of

function we call a transmutation. Much of the standard theory on permutations generalizes to

transmutations. The basic results on transmutations presented below have been known for some

time in the field of symmetric inverse semigroups (Lipscomb, 1986, 1996), but in Section 2.1 we

give our own concise, self-contained presentation of the exact results needed for the local algorithm.

The algorithm itself is described and analyzed in Section 2.2. Proofs of all results can be found in

Appendix A.

2.1 Transmutations

Let X be a finite set. Intuitively, we are interested in injective functions π from X to X which are

not necessarily defined at every point. The following definition just makes this notion precise:

Definition 2.1. A transmutation of X is an ordered pair π = (S, f) where S ⊆ X and f is an

6

injective function from S to X . The set of all transmutations of X is denoted Trans(X).

If we think of π in the intuitive way as a function on X , then S is just the set of points on which

π is defined.

Define a product on Trans(X) as follows: given transmutations π = (S, f) and σ = (T, g), let

πσ = (U, h), where U = {x ∈ T | g(x) ∈ S} and h(x) = f(g(x)) for x ∈ U . On the intuitive

level, πσ is the functional composition of π and σ, but is only defined at those points where the

composition makes sense.

The transmutation (X, idX), where idX is the identity function on X , will be denoted simply

1X . For any π, σ, τ ∈ Trans(X), we have

1. 1Xπ = π1X (the identity property), and

2. (πσ)τ = π(στ) (the associativity property).

A set M with a binary operation and identity element e satisfying the identity and associativity

properties is known as a monoid (Howie, 1995). An element a of a monoid M is said to be invertible

if there exists b ∈M such that ab = e = ba. The set of invertible elements of M forms a group. For

the monoid Trans(X), the set of invertible elements is {(X, f) | f : X → X is a 1-1 correspondence}.

This group is isomorphic to the group of permutations of X .

Although not every element of Trans(X) has an inverse, we can define the pseudo-inverse of

any element as follows. Given π = (S, f) ∈ Trans(X), let σ = (f(S), g), where g is defined

by g(f(x)) = x for all x ∈ S. This is well-defined since f is injective. Then σπ = (S, idS) and

πσ = (f(S), idf(S)). We call σ the pseudo-inverse of π.

We next define two basic kinds of transmutations, which form the “building blocks” of Trans(X).

Definition 2.2. Let n ≥ 1, and let x1, . . . , xn be n distinct elements of X . Define f : X → X by

f(x) =


xi+1 if x = xi for some 1 ≤ i < n

x1 if x = xn

x if x ̸∈ {x1, . . . , xn}.

7

The transmutation π = (X, f) is called a cycle, and is denoted (x1, . . . , xn). The length of the

cycle is n, and is denoted len(π).

Note there are many different ways to denote the same cycle, e.g., (x1, x2, x3) = (x2, x3, x1).

However, the length of a cycle is well-defined.

A cycle is said to be trivial if it has length 1. Clearly, a trivial cycle equals 1X .

Definition 2.3. Let n ≥ 1, and let x1, . . . , xn be n distinct elements of X . Let S = X \ {xn}.

Define f : S → X by

f(x) =


xi+1 if x = xi for some 1 ≤ i < n

x if x ̸∈ {x1, . . . , xn}.

The transmutation π = (S, f) is called a shift and is denoted [x1, . . . , xn]. The length of the shift

is n, and is denoted len(π).

We now turn to the problem of factoring a transmutation.

Definition 2.4. Let π = (S, f) ∈ Trans(X). The support of π is the set

supp(π) ≡ {s ∈ S | f(s) ̸= s} ∪ (X \ S).

Hence the support of π consists of the points that are either “moved” by f or where f is not

defined.

Definition 2.5. Let π, σ ∈ Trans(X). We say π and σ are disjoint if supp(π) ∩ supp(σ) = ∅.

The following is an easy exercise in the definitions:

Proposition 2.6. If π and σ are disjoint transmutations of X then

1. πσ = σπ, and

2. supp(πσ) = supp(π) ∪ supp(σ).

8

Note that the support of a non-trivial cycle (x1, . . . , xn) is {x1, . . . , xn} (n ≥ 2). The support

of a shift [x1, . . . , xn] is {x1, . . . , xn} (n ≥ 1). Hence two of these primitive transmutations are

disjoint if the two sets of symbols occurring in their representations do not intersect. The following

is proved in Appendix A:

Theorem 2.7 (Lipscomb, 1986, 1996). Every transmutation can be expressed as a product of non-

trivial disjoint cycles and shifts. This factorization is unique, up to order.

Example 2.8. Let X = {1, 2, 3, 4, 5}, S = {1, 2, 3}, f(1) = 2, f(2) = 1, f(3) = 4, and π =

(S, f). Then π = (12)[34][5] is the unique factorization of π as a product of non-trivial disjoint

cycles and shifts.

Note. The identity transmutation is considered to have the trivial factorization consisting of no

cycles or shifts.

2.2 Local algorithm

The local redistribution problem can be formulated as follows. We are given an array of data

blocks indexed from 0 to n − 1, and a transmutation π = (S, f) on the set X = {0, 1, . . . n − 1}.

An algorithm solves the redistribution problem if for all i ∈ S, the contents of block f(i) after

redistribution equals the contents of block i before redistribution. We assume the algorithm works

by issuing a sequence of instructions of the form copy(s, t), which copies the contents of block t

to block s, and that additional “scratch” blocks can be allocated.

The MADRE local redistribution algorithm is given in Figure 2. The transmutation π is repre-

sented as an integer array p of length n. A negative value for p[i] indicates that i is not in S, i.e.,

that block i is free. The algorithm begins by checking that f is injective and computing the pseudo-

inverse of π, storing this in array q (lines 4–7). A non-negative value for q[i] indicates that block i

is waiting to receive the contents of block q[i]; a negative value indicates that block i should not be

updated. As soon as the correct data is copied into block i, q[i] is set to −1, so that at termination

all entries of q will be −1.

9

procedure localRedistribute is1
input: n : Integer, p : array 0..n− 1 of Integer, blocks : array 0..n− 1 of Block;

q : array 0..n− 1 of Integer; /* used to store pseudo-inverse of p */2

tmp : Block; /* temporary space to hold one block when redistributing a cycle */3

for i← 0 to n− 1 do q[i]← −1;4

for i← 0 to n− 1 do /* compute pseudo-inverse and check p is injective */5

j ← p[i];6

if j ≥ 0 then {assert q[j] < 0; q[j]← i;}7

for k ← 0 to n− 1 do8

while k < n ∧ q[k] < 0 do k ← k + 1;9

if k = n then break;10

i← k; j ← p[i];11

while j ≥ 0 ∧ j ̸= k do {i← j; j ← p[i];}12

if j < 0 then /* shift */13

j ← i; i← q[j];14

while i ≥ 0 do {copy(blocks[j], blocks[i]); q[j]← −1; j ← i; i← q[j];}15

else /* cycle */16

if i ̸= k then /* non-trivial cycle */17

copy(tmp, blocks[j]);18

while i ̸= k do {copy(blocks[j], blocks[i]); q[j]← −1; j ← i; i← q[j];}19

copy(blocks[j], tmp);20

q[j]← −1;21

Figure 2: Local Redistribution Algorithm

The algorithm proceeds by discovering the factors in the unique decomposition of π guaranteed

by Theorem 2.7. The factors are discovered by iterating over the entries of q, looking for the first

non-negative value. The index of this entry is k. We must next discover whether k belongs to a

cycle or a shift. This is accomplished by repeatedly applying p until either we return to k or we

reach a point i for which p[i] < 0; in the first case we have discovered a cycle, in the second a shift.

The redistribution for a shift [x1, . . . , xm] (m ≥ 1) is handled by copying data from xm−1 to

xm, then from xm−2 to xm−1, and so on, finally copying from x1 to x2. The number of copies used

to execute the shift is m− 1.

The redistribution for a non-trivial cycle (x1, . . . , xm) (m ≥ 2) is accomplished by first copying

xm to a temporary space, then copying xm−1 to xm, and so on, and finally copying the temporary

space to x1. The number of copies is m + 1.

10

The total number of copies performed by the algorithm is

ncpy(π) ≡
∑

σ∈Shift(π)

(len(σ)− 1) +
∑

τ∈Cyc(π)

(len(τ) + 1),

where Shift(π) is the set of shift factors in the unique decomposition of π, and Cyc(π) is the set of

non-trivial cyclic factors.

Theorem 2.9. For any π ∈ Trans(X), ncpy(π) is the minimal number of copies that can occur in

a redistribution solution for π.

We now consider the complexity of the algorithm as a function of the number of blocks n. We

assume the size of a block and the time required to execute copy are constant.

Theorem 2.10. The functions for worst-case time and memory consumed by the local redistribution

algorithm are both O(n).

3 Distributed Algorithms

We now formally describe the full parallel redistribution problem that was introduced in Section

1. The distributed data redistribution problem generalizes the local problem described in Section

2.2. For the distributed problem we assume a distributed-memory parallel program consisting of

N processes. Each process maintains in its local memory a contiguous, fixed-sized array of data

blocks of arbitrary fixed size. Let mi be the number of blocks maintained by process i (0 ≤ i <

N). A block is specified by its address (i, j), where i is the process rank and j (0 ≤ j < mi)

is the array index. Let A denote the set of all addresses. A distributed redistribution problem

is specified by a transmutation π = (B, f) ∈ Trans(A). As in the local case, a redistribution

algorithm solves the problem if for all b ∈ B, the contents of f(b) after redistribution equal the

contents of b before redistribution. The distributed problem may be thought of as an “in-place”

version of MPI_ALLTOALLV.

11

The algorithms implemented in MADRE are expected to satisfy certain additional requirements.

The first is that each should be a complete algorithmic solution to the data redistribution problem,

i.e., it should terminate in finite time with the correct result on any redistribution problem, even

one with no free blocks on any process. Second, the additional memory required by the algorithm

should depend only linearly on the problem size. To be precise, there must be (reasonably small)

constants c1, c2, and c3 such that the memory required by the algorithm on process i is at most

c1N + c2mi + c3l. Algorithms with a quadratic dependence on the problem size will not scale on

current high-end machines. In particular, no single process can store the entire global map π; it is

only given the destination addresses for its own blocks. Finally, each algorithm should consume

other resources frugally; e.g., the number of outstanding MPI communication requests on a process

must stay within reasonably small bounds.

The MADRE library includes a module for the management of blocks on a single process. This

module maintains the destination addresses for each block and provides a procedure to sort the

blocks on a single process by increasing destination rank (with all free spaces at the end). The

sorting procedure uses the local redistribution algorithm of Section 2.2. The distributed algorithms

depend heavily on these services, in particular because it is often necessary to create contiguous

send and receive buffers.

Finally, the algorithms discussed here are restricted to a certain subset of MPI functions (referred

to as “permissible” in (Siegel and Avrunin, 2007)) that guarantees deterministic behavior. As shown

in (Siegel and Avrunin, 2007), the advantage gained by this is that the final state arrived at in any

execution of the program depends only on the inputs to the program (e.g., the map), and not on any

choices made by the MPI implementation. This makes the programs much easier to test and debug.

3.1 A Pinar-Hendrickson Parking Algorithm

Our first algorithm is an instance of the family of “parking” algorithms described in (Pinar and

Hendrickson, 2004). Pseudo-code for the algorithm is given in Figure 3. We first describe a more

basic algorithm from (Pinar and Hendrickson, 2004), and then describe the modifications to the

12

symbol meaning
N number of processes

out[i] number of blocks remaining to send to proc i
in[i] number of blocks remaining to receive from proc i

send[i] number of blocks to send to i in current phase
recv[i] number of blocks to receive from i in current phase
park[i] number of parking blocks to send to i in current phase

∆[i] number parking spaces (−) or blocks to park (+) for proc i (root only)
free number of free spaces on this proc

procedure main is1

while true do2

update out;3

done← (
∑

i out[i] = 0 ? 1 : 0);4

Allreduce(done, 1, INT, LAND);5

if done then break;6

computeDirectMoves();7

addParking();8

executePhase();9

procedure computeDirectMoves is10

Alltoall(out, 1, INT, in, 1, INT);11

r ← free;12

for i← 0 to N − 1 do13

recv[i]← min{r, in[i]};14

r ← r − recv[i];15

Alltoall(recv, 1, INT, send, 1, INT);16

procedure executePhase is17

sortBlocks();18

foreach {i | recv[i] > 0} do19

post recv for recv[i] blocks from proc i20

foreach {i | send[i] > 0} do21

post send of send[i] blocks to proc i22

free← free +
∑

i(send[i]− recv[i]);23

wait for all requests to complete;24

procedure addParking is25

foreach i do park[i]← 0;26

d← (
∑

i in[i])− free;27

s←
∑

i send[i];28

if d < 0 then δ ← d;29

else if d > s then δ ← d− s;30

else δ ← 0;31

Gather(δ, 1, INT, ∆, 1, INT, root);32

if myRank = root then33

foreach {i | ∆[i] > 0} do34

foreach j do35

t[j]← num. parking blocks36

proc i will send to proc j
if i ̸= root then37

Send(t, N, INT, i);38

else39

foreach j do park[j]← t[j];40

else41

if δ > 0 then42

Recv(park, N, INT, root)43

foreach i do44

send[i]← send[i] + park[i]45

Alltoall(send, 1, INT, recv, 1, INT);46

Figure 3: A Pinar-Hendrickson parking algorithm

basic version which yield the parking algorithm.

The basic algorithm proceeds in a series of global phases. Within each phase, each process

receives as much data as possible into its free space while sending out as much data as possible

to other processes. When this communication completes, the space occupied by the sent data is

13

reclaimed as free, the blocks are re-sorted, and the next phase begins. This continues until all

blocks have arrived at their final destinations.

The protocol for determining how many blocks a process p will send and receive to/from other

processes in a phase proceeds as follows. First, p informs each process q of the number of blocks

it has to send to q. These can be thought of as “requests to send” on the part of p. At the same

time, p receives similar requests from the processes that wish to send it data. If p does not have

sufficient free space to receive all the incoming data, it uses some heuristic to apportion its free

space among its sources. In any case, p sends each source a message stating how much of the

request will be granted, i.e., the number of blocks it will receive from that source in the current

phase. (Our implementation uses the first-fit heuristic of (Pinar and Hendrickson, 2004).) At the

same time, p receives similar granting messages from its targets. At this point, p knows how many

blocks it will send and receive to/from each process. The data is then transferred by initiating

nonblocking send and receive operations for the specified quantities.

There are situations in which the basic algorithm described above does not terminate. This can

happen, for example, if a cyclic dependency occurs among a set of processes with no free space.

Moreover, when it does complete it may take many more phases than necessary. For these reasons,

Pinar and Hendrickson introduce “parking.” The idea is that if p does not have enough free space

to receive all of its incoming data in the next phase it can temporarily “park” data on processes

with extra free space. The parked data will be moved to its final destination when space becomes

available. A root process is used in each phase to match processes with data to park with those with

extra free space. A parking algorithm will always complete, as long as there is at least one free

space on at least one process. (Our implementation allocates a single free space if there are no free

spaces at all so that the algorithm will complete in all cases.) Parking can also significantly reduce

the number of phases, approximating to within a factor of 1.5 a minimal-phase solution, though

this does not always reduce the run-time.

14

3.2 Cyclic Scheduler

The parking algorithm described above exhibits several potential weaknesses. First, the total quan-

tity of data moved is greater than necessary, because parking blocks are moved more than once.

Second, the division into phases, with an effective barrier between each phase, may limit the pos-

sible overlap of communication with communication. For example, if some processes require very

little time to complete their work in a phase, they will block, waiting for other processes to com-

plete the phase, when they could be working on the next phase. Third, the number of phases may

blow up as the total number of free spaces decreases, and there is significant overhead required to

execute each phase.

Like the parking algorithm, the cyclic scheduler algorithm uses a root process to help schedule

actions on other processes. However, it differs in several ways. First, all blocks are moved directly

to their final destinations. Second, the cyclic algorithm separates the process of schedule creation

from the process of schedule execution. The schedule is created in the first stage of the algorithm,

which relies heavily on the root. Once that stage completes, each process has the complete sequence

of instructions it must follow in order to complete the redistribution. In the schedule execution

stage, each process executes these instructions. In this stage, the root plays no special role, there are

no effective barriers, and minimal overhead is required. Since the length of a schedule is bounded

above by mi, the memory overhead required to store the schedule is within our required limits. In

all of our experiments to date, the time required to complete the schedule creation stage has been

insignificant compared to the time required for the execution stage.

A schedule is a sequence of actions for a process to follow. There are three types of actions.

The first has the form “Send q blocks to process p1 in increments of c blocks,” meaning that the

process should send a message to p1 containing c blocks, then another message of c blocks, and

so on, until a total of q blocks have been sent. (The final message will consist of q%c blocks if

c does not divide q.) The other action types are “Receive q blocks from p2 in increments of c”

and “Send q blocks to p1 and receive q blocks from p2 in increments of c.” The last form requires

that c blocks be sent and c received, and after those operations have completed, another c are sent

15

and received, and so on. The blocks must be sorted once before an action begins, but do not have

to be sorted again until the next action is executed. This is an important point which reduces the

overhead associated to executing an action.

To create the schedule, the root essentially performs a depth-first search of the transmission

graph. This is the weighted directed graph in which the nodes are the process ranks, and there is

an edge from i to j of weight k > 0 if i has k blocks to send to j. It is not possible to store the

entire transmission graph on the root in linear memory. Instead, each process p sends the root one

outgoing edge, i.e., the rank r of a single process to which p has data to send and the number of

blocks p has to send to r. As soon as the root has received an edge from each process, it begins

scheduling actions. This involves decrementing edge weights, and sending actions back to the non-

root processes. When the weight of an edge from p reaches 0, the root requests a new edge from

p. Hence edges are continually flowing in to the root and actions are continually flowing out, in a

pipelined manner, which is how the memory required by the root is bounded by a constant times

the number of processes.

The main part of the scheduling algorithm on the root is shown in Figure 4. The root uses a

stack to perform the search of the graph. The stack holds nodes in the graph, i.e., process ranks. If

p0 and p1 are two consecutive elements in the stack then there is an edge from p0 to p1. The stack

grows until either (a) a cycle is reached, i.e., the destination rank of the edge departing from the

last node on the stack is already on the stack, or (b) a node is reached with no remaining outgoing

edges (i.e., no data to send). In case (a), an action is scheduled on each process in the cycle, while

in case (b), an action is scheduled on each process in the stack. The algorithm for case (a) is shown.

The functions for sending actions and retrieving edges are not shown; these involve parameters,

such as the number of actions/edges to include in a single message, that provide some control over

the memory/time trade-off.

In case (a), the number of blocks q to be sent and received by each process is the minimum

weight of an edge in the cycle. The increment is usually the minimum number of free spaces for

a process in the cycle. However, if there is a process with no free space, the increment is set to

16

symbol meaning
degree[i] number of remaining edges departing from proc i in transmission graph
stack[i] ith element in DFS stack containing nodes of transmission graph

stackSize current size of DFS stack
weight[i] weight of current edge departing from proc i

dest[i] destination node for current edge departing from i
free[i] current number of free spaces on proc i

procedure main is1

for i← 0 to N − 1 do2

while degree[i] > 0 do3

push(i);4

while stackSize > 0 do5

r ← peek();6

if degree[r] = 0 then7

scheduleShift();8

else9

d← dest[r];10

p← stackPos[d];11

if p < 0 then push(d);12

else scheduleCycle(p);13

procedure scheduleCycle(s) is14

q ← mini≥s{weight[stack[i]]};15

c← min{q, max{1, mini≥s{free[stack[i]]}}};16

l← peek();17

while stackSize > s do18

p1 ← pop();19

p2 ← dest[p1];20

if stackSize > s then p0 ← peek();21

else p0 ← l;22

schedule send-recv on p1 with source p0,23

dest p2, quantity q, and increment c;
weight[p1]← weight[p1]− q;24

if weight[p1] = 0 then nextEdge(p1);25

Figure 4: The cyclic scheduler root scheduling algorithm.

1: in this case an extra free space reserved for this situation will be used to receive each incoming

increment. When the cycle has been executed the extra space will again be free. This is the essential

fact that guarantees the algorithm will always terminate, though it does require the allocation of

an additional block on each process. The actions scheduled in case (b) are similar, though the first

element in the stack performs only a send and the last performs only a receive.

The algorithm is most effective when it finds many long cycles or shifts with large quantities.

The idea is that all of the actions comprising a single cycle/shift can execute in parallel and should

take approximately the same amount of time. Moreover, as pointed out above, no local redistribu-

tion needs to take place during the execution of an action.

17

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 2 4 8 16 32 64 128 256 512 1024

Cyclic (0 free blocks)
Park (5K free blocks)
Cyclic (5K free locks)

 1

 10

 100

 12000 14000 16000 18000 20000 22000 24000

Park (128 procs)
Cyclic (128 procs)

(a) Simple global cycle (b) Effect of decreasing free memory

 1

 10

 100

 1000

 10000

 2 4 8 16 32 64 128 256 512 1024

Park
Cyclic

 1

 10

 100

 1000

 2 4 8 16 32 64 128 256 512 1024

Park
Cyclic

(c) All free space on one process (d) Global transpose, 5,000 free blocks/proc

Figure 5: Time to redistribute data. In all cases, each process maintains 25,000 memory blocks of
16,000 bytes each and the y-axis is the time in seconds to complete a data redistribution. In (a),
(c), and (d), the x-axis shows the number N of processes in logarithmic scale. In (b), (c), and (d)
the time is logarithmic.

4 Experiments

We report here on a few experiments comparing the performance of the different algorithms. The

experiments are designed to test the algorithms in situations of very high data movement and very

limited memory. All experiments were executed on the 1024-node IBM Blue Gene/L at Argonne

National Laboratory. In each experiment, each process maintains an array of 25,000 blocks, and

each block consists of 16,000 bytes. Thus 400 MB are consumed by data, which is a significant

portion of the 512 MB total RAM available on each node.

In the first experiment, each process has no free space, and wishes to send all 25K blocks to the

next process in the cyclic ordering i 7→ (i+1)%N , where N is again the number of processes. The

data redistribution was timed for various values of N . The second experiment is similar, except that

each process has 5K free spaces and sends 20K blocks. The results of these two experiments are

shown in graph (a) of Figure 5. The time for the parking algorithm to complete the first experiment

18

is not shown because it did not terminate after 30 minutes; the reasons for this will be explained

below. Otherwise, the times range from 2.5 to 5.5 seconds and remain relatively constant as the

number of processes is scaled in each case, suggesting near-perfect parallelism in the data transfer.

The third experiment is similar to the two above, except that the number of processes was fixed

at 128 and the number of blocks to be transferred was scaled from 12K to 25K. (Equivalently, the

number of free spaces was decreased from 13K to 0.) The results are shown in graph (b) of Figure

5, and illustrate how the time of the parking algorithm blows up with the decreasing amount of free

space, in contrast with the cyclic algorithm. Our performance analyses reveal that this behavior is

not due to the communication patterns, which are essentially the same in both cases. Rather, the

difference arises because the parking algorithm requires that data be re-sorted at the end of each

phase. In this experiment, the distribution of the blocks on process N − 1 at the end of each phase

presents a worst case scenario for the sort: the entire array of blocks must be shifted, requiring

on the order of 25K calls to memcpy (of 16 KB) as the free space approaches 0. Moreover, the

number of phases approaches 25K as the free space approaches 0, and so the time dedicated to

sorting quickly blows up. For the cyclic algorithm, each process need only execute a single send-

receive action of 25K blocks with increment equal to the number of free spaces. Because a sort is

only required at the end of each action, the cyclic algorithm performs only one sort for the entire

execution.

In the fourth experiment, one process has 25K blocks of free space and all others have no free

space. Each of the processes with data wishes to send an approximately equal portion of its data

to all other processes. The times are shown in Figure 5(c). Both algorithms complete for every

process count, though the time clearly grows exponentially for both.

In the fifth experiment, each process has 5K free spaces and the map sends block j of process

i to position (mi + j)/N of process (mi + j)%N , where m = 20K. (The map is essentially a

global transpose of the data matrix.) The results are shown in Figure 5(d). In this case the cyclic

algorithm blows up with process count, and cannot scale beyond 128 nodes without exceeding

our 30-minute limit. In contrast, the parking algorithm scales reasonably well and completes the

19

1024-node redistribution in only 28 seconds.

Further investigation revealed the reason for the discrepancy. For this redistribution problem,

the transmission graph is the complete graph in which all edges have approximately equal weight.

Moreover, in our implementation each process orders its outgoing edges by increasing destination

rank. The result is that all of the actions scheduled by the root are cycles of length 2. These are

scheduled in the “dictionary order”

{0, 1}, {0, 2}, . . . , {0, N − 1}, {1, 2}, {1, 3}, . . . , {1, N − 1}, . . . , {N − 1, N}.

The execution of one of these pairs involves the complete exchange of data between the two pro-

cesses. If all exchanges take approximately the same time, execution will proceed in 2N+3 phases:

in phase k, the exchanges for all pairs {i, j}, where i + j = k and i ̸= j, will take place. This

means that many processes will block when they could be working. For example, in phase 1 only

processes 0 and 1 will exchange data, while all other processes wait. In contrast, the parking algo-

rithm completes in 4 stages for any N . Hence, in this case, the parking algorithm achieves much

greater overlap of communication.

5 Conclusion

For a certain class of scientific applications, the limited-memory data redistribution problem will

become an increasingly important component of overall performance and scalability as we move

toward the petascale. Solutions to this problem are difficult and subtle. Solution algorithms can

behave in ways that are difficult or impossible to predict using purely analytical means, so experi-

mentation is essential for ascertaining their qualities. We have implemented a practical framework

with multiple solutions to the problem, two of which are explored in this paper. A series of simple

experiments helped us identify some potential weaknesses in a variant of the Pinar-Hendrickson

parking algorithm. We addressed these in a new algorithm, only to discover different situations in

which that algorithm also performs poorly.

20

We continue to refine the algorithms presented here and to explore entirely new ones. In ad-

dition, we are exploring heuristics capable of predicting which algorithm will perform well on a

given problem. It may also be possible to combine different algorithms, so that in certain states the

algorithm will be switched dynamically, in the middle of the redistribution. Finally, we are prepar-

ing another set of experiments in which we integrate MADRE directly into scientific applications,

as opposed to the synthetic experiments reported on here.

Acknowledgements. We are grateful to Ali Pinar for answering questions about the parking al-

gorithm and making the code used in (Pinar and Hendrickson, 2004) available to us. We also thank

Anthony Chan for assistance with the Jumpshot performance visualization tool (Zaki et al., 1999).

A Proofs

Proof of of Theorem 2.7. We first establish some notation. Let S ⊆ X and f : S → X an injective

function. For any integer i, we will define a function f i from a subset of X to X . For i = 0,

f 0 = idX . For i > 0, f i(x) = f(f i−1(x)) and the domain of f i consists of all x in the domain of

f i−1 such that f i−1(x) ∈ S. For i < 0, f i(x) is defined if there exists y ∈ X such that f−i(y) = x,

in which case f i(x) = y; this is well-defined since f is injective. Note that f i+j(x) = f i(f j(x))

for any integers i and j and any x for which the expressions are defined. We define

f ∗(x) = {f i(x) | i ∈ Z and x is in the domain of f i}

Note that x ∈ f∗(x), by taking i = 0.

The proof is by induction on |supp(π)|. If supp(π) = ∅ then π = 1X , which has the trivial fac-

torization. So suppose |supp(π)| ≥ 1 and that the theorem holds for any transmutation with support

of size less than |supp(π)|. We will show how to express π as product of disjoint transmutations

σ and τ , where τ is a non-trivial cycle or shift and supp(σ) (supp(π). The inductive hypothesis

can then be applied to σ, and Proposition 2.6(2) ensures the factors of σ will all be disjoint from τ ,

21

completing the proof.

Write π = (S, f). Let t ∈ supp(π), and T = f ∗(t). Let σ = (S ∪ T, g), where

g(x) =


x if x ∈ T

f(x) if x ∈ S \ T .

The injectivity of g follows from the injectivity of f and the fact that if x ∈ S \ T then f(x) ̸∈ T .

Hence σ ∈ Trans(X) and supp(σ) = supp(π) \ T (supp(π) as t ∈ T .

Let τ = (X \ (T \ S), h), where

h(x) =


x if x ∈ X \ T

f(x) if x ∈ S ∩ T .

The injectivity of h follows from that of f and the fact that if x ∈ S ∩ T then f(x) ∈ T . Hence

τ ∈ Trans(X) and supp(τ) = (T \S)∪ (T ∩ supp(π)). Furthermore, it is not possible that τ = 1X .

For if this were the case then we would have T \ S = ∅, i.e., T ⊆ S, and hence t ∈ S. The

definition of h would then imply f(t) = t, which contradicts that assumption that t ∈ supp(π).

It is clear that σ and τ are disjoint and that π = στ . It remains to see that τ is either a cycle or

a shift.

Case 1: T ⊆ S. We will show τ is a cycle. Since T ⊆ S, f i(t) is defined for every integer

i. Since S is finite, there must exist j > k ≥ 0 such that f j(t) = fk(t). Since f is injective,

f j−k(t) = t. Let m be the least positive integer such that fm(t) = t. Given any integer i, write

i = mq + r, where 0 ≤ r < m. Then f i(t) = fmq+r(t) = f r(fmq(t)) = f r(t). This shows that

T = {t, f(t), . . . , fm−1(t)}, from which it follows τ is the cycle (t, f(t), . . . , fm−1(t)).

Case 2: T ̸⊆ S. We will show τ is a shift. First, it is not possible that f i(t) is defined for

all i ≥ 0. For if this were the case, we could argue as in Case 1 to show that fm(t) = t for

some m, and from there that T ⊆ S. So let m be the least positive integer such that t is not in

the domain of fm. Similarly, it is not possible that f i(t) be defined for all i ≤ 0, so let n be

22

the greatest negative integer such that t is not in the domain of fn. It follows that τ is the shift

[fn+1(t), . . . , f−1(t), t, f(t), . . . , fm−1(t)].

Proof of Theorem 2.9. Let µ(π) denote the minimal number of copies that can occur in a solution

for π. We first claim that if π = π1π2, where π1 and π2 are disjoint transmutations, then µ(π) =

µ(π1) + µ(π2). To see this, note that any copy instruction in a redistribution solution involves

copying data that originated in some block. Given any solution for π, the subsequence of copy

instructions for data that originated in supp(π1) will be a solution for π1. A similar statement holds

for π2. Since the supports of π1 and π2 are disjoint, µ(π) ≥ µ(π1) + µ(π2). On the other hand,

suppose we are given solutions for π1 and π2. If the solution for π1 uses any blocks in supp(π2),

replace these with temporary blocks to get another solution of the same length; likewise for π2.

Now a solution for π can be obtained by appending the solution for π2 to the one for π1, showing

µ(π) ≤ µ(π1) + µ(π2).

This means we only need to show that ncpy(π) = µ(π) for π a cycle or a shift. If π is a shift

of length m, there are precisely m − 1 blocks that must be moved to new locations, so clearly

µ(π) ≥ m − 1 = ncpy(π), so ncpy(π) = µ(π) in this case. If π is a cycle of length m ≥ 2, there

are m blocks that must be moved to new locations. Given any solution, consider the first copy from

a block in S ≡ supp(π). The target of this copy cannot be in S, because that would overwrite data

that has not yet been copied to another location. Hence the first copy must be into some block not

in S. So after this first copy completes, there are still m blocks that need to be copied to their final

destinations. Hence µ(π) ≥ m + 1, and we have ncpy(π) = µ(π) in this case as well.

Proof of Theorem 2.10. Space is clearly O(n). To see that time is O(n), we argue that the body

of each loop is executed no more than n times. This is obvious for the loops on lines 4, 5, and

8. The loop on line 9 always begins with a value of k at least one larger than the final value of k

from the previous iteration, so can iterate no more than n times. Now, X is the disjoint union of

the sets supp(σ) (σ ∈ Cyc(π) ∪ Shift(π)) and the sets {x} (for all x ∈ X such that f(x) = x).

After any execution of the body of the loop of line 8, q[x] = −1 for all x in the partition containing

k. Since control can only reach line 11 if q[k] ≥ 0, this implies that the inner loops (lines 12, 15,

23

19) are executed at most once for each σ. Moreover, each inner loop iterates at most once over the

elements of supp(σ). Hence the total number of iterations of each inner loop is at most n.

References

Catalyurek, U., E. Boman, K. Devine, D. Bozdag, R. Heaphy, and L. Riesen (2007). Hypergraph-

based dynamic load balancing for adaptive scientific computations. In Proc. of 21st International

Parallel and Distributed Processing Symposium (IPDPS’07). IEEE.

deCougny, H. L., K. D. Devine, J. E. Flaherty, R. M. Loy, C. Özturan, and M. S. Shephard (1994).

Load balancing for the parallel adaptive solution of partial differential equations. Appl. Numer.

Math. 16(1-2), 157–182.

Howie, J. M. (1995). Fundamentals of Semigroup Theory. Oxford University Press.

Lipscomb, S. (1986). Cyclic subsemigroups of symmetric inverse semigroups. Semigroup Fo-

rum 34, 243–248.

Lipscomb, S. (1996). Symmetric Inverse Semigroups. Providence, RI: American Mathematical

Society.

Nieter, C. and J. R. Cary (2004). Vorpal: a versatile plasma simulation code. J. Comput.

Phys. 196(2), 448–473.

Pinar, A. and B. Hendrickson (2004, July). Interprocessor communication with limited memory.

IEEE Transactions on Parallel and Distributed Systems 15(7), 606–616.

Ricker, P. M., B. Fryxell, K. Olson, F. X. Timmes, M. Zingale, D. Q. Lamb, P. MacNeice, R. Ros-

ner, and H. Tufo (1999, December). FLASH: A multidimensional hydrodynamics code for mod-

eling astrophysical thermonuclear flashes. Volume 31 of Bulletin of the American Astronomical

Society, pp. 1431.

Siegel, S. F. (2008). The MADRE web page. http://vsl.cis.udel.edu/madre.

24

Siegel, S. F. and G. S. Avrunin (2007). Verification of halting properties for MPI programs using

nonblocking operations. In F. Cappello, T. Hérault, and J. Dongarra (Eds.), Recent Advances

in Parallel Virtual Machine and Message Passing Interface, 14th European PVM/MPI User’s

Group Meeting, Paris, France, September 30 - October 3, 2007, Proceedings, Volume 4757 of

Lecture Notes in Computer Science, pp. 326–334. Springer.

Zaki, O., E. Lusk, W. Gropp, and D. Swider (1999). Toward scalable performance visualization

with Jumpshot. Int. J. High Perform. Comput. Appl. 13(3), 277–288.

Biographies

Stephen F. Siegel is an Assistant Professor in the Department of Computer and Information Sci-

ences and the Department of Mathematical Sciences at the University of Delaware, where he leads

the Verified Software Laboratory and teaches courses in software engineering, parallel program-

ming, and software analysis and verification. His current research focuses on the development

of parallel and distributed algorithms as well as the analysis and formal verification of scientific

software. One of the tools resulting from this work is MPI-Spin, which uses model checking and

symbolic techniques to verify the functional correctness of MPI-based numerical programs. Dr.

Siegel received the Ph.D. in mathematics from the University of Chicago, was a National Science

Foundation postdoctoral fellow in mathematics at Northwestern University, and a visiting assis-

tant professor at the University of Massachusetts Amherst. His mathematical work deals with the

cohomology and representation theory of finite groups.

Andrew Siegel is currently a Computational Scientist in the Mathematics and Computer Sci-

ence Division of Argonne National Laboratory, serving as Head of the Nuclear Energy Advanced

Simulation Program. Dr. Siegel has considerable experience designing large, multiphysics appli-

cations for parallel computers, previously serving for four years as the Lead Architect for the ASCI

Flash Project at the University of Chicago, and currently leading Argonne’s efforts in designing an

integrated high-fidelity virtual nuclear reactor. He combines this research experience with a back-

25

ground as an industrial software architect, and continues to consult and serve as a board member

for several innovative companies. Dr. Siegel also holds the position of Adjunct Professor of Com-

puter Science at the University of Chicago, where he has designed a popular software engineering

curriculum and taught over twenty-five courses in scientific computing and software design. He

received his undergraduate degree from the University of Chicago and Ph.D. from the Unversity

of Colorado at Boulder in Astrophysics.

26

